
IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 26, 2024 2419

Personalized Representation With Contrastive Loss
for Recommendation Systems
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Abstract—Sequential recommendation mines the user’s
interaction sequence or time information to get better
recommendations and thus is gaining more and more attention.
Existing sequential recommendations tend to build new models,
and the study of the loss function is seriously neglected. Despite
the increasing attention paid to contrastive learning recently, we
believe that the key to contrastive learning is contrastive loss(CL),
which also provides a new option for sequential recommendation.
However, we find it works against the personalized representation
of features. First, it is a relative constraint that keeps positive and
negative samples away from each other but without an absolute
constraint. Second, recent studies have shown that all embeddings
should be uniformly distributed. However, CL only widens the
distance of positive and negative samples within the training batch,
rather than making a uniform distribution of all items. These
two shortcomings make the embedding space too compact, which
is harmful to personalized representation and recommendation.
Therefore, this article proposes Personalized Contrastive Loss
(PCL) to combine CL with absolute constraints of BCE/CE and
employs regularization methods to make the representations
uniformly distributed. State-of-the-art results are obtained in
experiments on several commonly used datasets. The code and
data will be available on GitHub.

Index Terms—Personalization, contrastive loss, sequential
recommendation, uniformity.

I. INTRODUCTION

IN THE era of Big Data, recommendation systems are widely
studied to face information overload and information explo-

sion problems [1], [2], [3]. Sequential recommendation con-
sidering temporal information and order of user interaction is
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one of the important directions [4], [5], [6], [7]. It is already
widely used in various recommendations, such as music rec-
ommendations [8], fashion recommendations [9], personalized
recommendations [10], etc. Different methods have been pro-
posed for sequential recommendation, which can be divided
into two categories. One category is the traditional sequential
recommendation algorithms, which generally use classical al-
gorithms such as collaborative filtering and Markov chains.
The other category is the deep neural network-based sequen-
tial recommendation methods [4], [11], [12], [13]. Especially,
self-attention mechanisms or Transformer Encoder have been
introduced into this field and significantly facilitated the se-
quential recommendation [5], [6], [14], [15]. Recently, the con-
trastive learning-based sequence recommendation method has
also become one of the hot directions of research [7], [16], [17],
[18]. However, these studies are limited to contrastive learning
frameworks.

We argue that the key of contrastive learning is contrastive
loss(CL) which also has the potential for sequential recommen-
dations. Various studies have focused on how to model sequen-
tial recommendations. The available loss functions for sequen-
tial recommendation are very few and are rarely studied. The
commonly used loss functions are almost always Cross En-
tropy(CE) and Binary Cross Entropy (BCE), and Bayesian Per-
sonalized Ranking (BPR) is sometimes used. And the CL-related
MSCL [19], RCL [20] and SSM [21] have achieved better re-
sults for top-k recommendations. Therefore, it is meaningful to
study the contrastive loss-based function for sequential recom-
mendations.

Personalization is particularly important for sequential rec-
ommendations. Because sequential recommendations specifi-
cally require that the users’ representations at different posi-
tions or times in the sequence are different and personalized. So
personalized feature representation is the key to achieving accu-
rate recommendations. And the user’s representation at different
time is obtained by feature aggregation of items’ embeddings in
more and more methods so personalization is also important for
items’ representation. Following DuoRec [16], when embed-
dings are projected into 2D by SVD with colors indicating the
frequency of items, we found that the feature space under CL
is too compact as shown in the left of Fig. 1, which is clearly
detrimental to the individualized representation of features. The
variance of embeddings can be used to measure the personal-
ization of features [22]. Our experiments show that the embed-
dings’ variance of CL is only 1/3 of the variance of BCE loss on
ML-1 M dataset.
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Fig. 1. Item embeddings of ML-1 M dataset in the feature space, with CL on
the left and our proposed PCL on the right. We significantly expand the distance
between items and the whole feature space, which facilitates the personalized
representation of features.

Therefore, CL should be improved for the personalized fea-
ture representation problem. There are two reasons for CL makes
a compact embedding space in sequential recommendations:

1) In CL, the closer the user is to the positive sample, the
better, and the further the user is from the negative sam-
ple, the better. This is a relative constraint because it is
only based on relative comparisons and does not have
an explicit value, 0 or 1, to give an absolute constraint.
Therefore, CL has the problem of insufficient absolute
constraints.

2) Many recent contrastive learning methods learn represen-
tations with a unit L2 norm constraint has two main proper-
ties: alignment and uniformity [23]. Alignment favors the
encoder to assign similar features to similar samples. Uni-
formity prefers to retain the distribution of features with
maximum information, that is, the distribution should be
uniform. But CL only constrains the distance between the
user and the negative items which are only a part of all
the items. And a good distribution requires that all items
should be distributed as uniformly as possible.

We propose Personalized Contrastive Loss (PCL) to solve the
above problems of CL. We give explicit absolute constraints in
combination with CE loss to keep the predicted values close to 0
or 1. To address the lack of constraints on the uniformity of the
CL, we add more uniformity regularization among samples. The
reasonable distance among items facilitates the representations
of individual characteristics of the items. Our proposed PCL
clearly maintains personalized features and improves the spatial
distribution of features relative to CL in Fig. 1.

This article considers personalized sequential recommenda-
tions from a fundamental perspective of representation learn-
ing, and the quality of embeddings. The proposed loss function
works from the perspective of learning objectives and training
optimization, is more adaptive, and can be used in many ex-
isting models. Therefore, it is of great importance. Moreover,
recent studies have shown that self-attention-based sequential
recommendation models are inherently subject to the risk of
oversmoothing. Self-attention-based sequential recommenda-
tions suffer from the same risk of oversmoothing as graph aggre-
gation [24]. Representation degeneration problem is found by
recent advancements of sequential models such as Transformer
and BERT [16]. Our approach alleviates the problem of insuffi-
cient personalized features from a fundamental perspective, i.e.,

in terms of target constraints. It also theoretically helps to solve
the smoothing problem caused by the model. Our contributions
are as follows,
� We propose a loss function PCL to solve the new problem

that CL makes the feature distribution too compact, which
is crucial for personalized feature representation and per-
sonalized sequential recommendation.

� We discovery that CL is a relative constraint, so we propose
to combine absolute constraints of BCE/CE with it and
make them work in a collaborative way.

� We propose to employ more uniformity regularization con-
straints to compensate for the drawback that CL just make
insufficient uniformity constraint.

� Extensive experiments demonstrate the effectiveness of
the proposed PCL and achieve state-of-the-art results. The
PCL is simple, effective, and adaptive.

II. RELATED WORK

A. Sequential Recommendations

Traditional recommendation systems model user-item inter-
actions in a static manner and can only capture users’ general
preferences. Sequential Recommendations treat user-item inter-
actions as a dynamic process and take into account the sequen-
tial or temporal dependence of the interactions to capture users’
current and most recent preferences for more accurate recom-
mendations. Sequential recommendations have become an ex-
tensively researched topic because it is more compatible with
recommendation scenarios and applications for the following
reasons. Both the users’ preferences and items’ popularity are
dynamic over time rather than static [4].

Many techniques and methods are used to make recommen-
dations. As a classical method for sequential recommendation,
Markov chains were used for sequential recommendation in the
early stage [25], [26]. But they can only capture the short-term
dependencies while ignoring long-term ones. Due to the natu-
ral strength in sequential modeling, recurrent neural networks
(RNNs), such as LSTM, and GRU, are introduced to this field.
RNN-based sequential recommendations [27], [28] try to pre-
dict the next possible interaction by modeling the sequential
dependencies over the given interactions. CNN-based sequen-
tial recommendations [29], [30] use the embedding matrix of
interaction sequences as an “image” in embedding space, mak-
ing better use of local features, but failing to make better use of
long-term dependencies. As a kind of graph data, graph neural
networks (GNNs) are naturally used for sequential recommen-
dation [13], [31], [32], [33], [34], [35]. Complex dependencies
in sequences are mined by graph convolution and have the poten-
tial to provide interpretability. However, graph-based methods
generally have a high computational complexity and training
time consumption.

Recently, due to the success of self-attention mechanisms,
Self-attention networks(SANs) based or Transformer encoder
based methods have been proposed [5], [7], [14], [15]. For ex-
ample, SASRec [5] uses the self-attention mechanism that can
capture long-term semantics while identifying related items and
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using them to predict the next item. SASRec yields better perfor-
mance and is widely used as a baseline for many methods [6],
[7], [36]. For example, TiSASRec [6] models both the abso-
lute positions of items as well as the time intervals between
them in a sequence based on SASRec. The previous approach
uses sequential neural networks to encode the user’s histori-
cal interactions from left to right as a hidden representation for
the recommendation. BERT4Rec [14] uses a deep bidirectional
self-attention network to model user behavior. Most sequential
recommendation models regard interaction histories as ordered
sequences, without regard for the time intervals between each in-
teraction. Contrastive learning is a new and valuable research di-
rection in deep learning, and sequential recommendation meth-
ods based on contrastive learning will be stated separately
next.

In summary, numerous methods have been proposed to model
the sequential recommendation problem. But these are problems
of how to represent, little attention has been paid to the quality of
the representations. The problem of approximation and smooth-
ness of these representations has been raised [16], [24], which is
an important issue that affects the representation of personalized
features and the effectiveness of personalized recommendations.
Besides, it is clear from the current studies that little attention
has been paid to the loss functions in the sequential recommen-
dation. Although BPR [37] is available, Binary cross-entropy
(BCE) and cross-entropy(CE) dominate absolutely. We focus
on improving the personalized representation problem with a
new loss function.

B. Contrastive Learning-Based Sequential Recommendations

Contrastive learning is a kind of self-supervised learning,
which has become a hot research topic in recent years for its
simplicity and effectiveness [38], [39], [40], [41], [42]. It obtains
two different inputs of the same data by data augmentation, and
two different transformations of the same data constitute posi-
tive pairs and the other data in the same batch constitute negative
pairs. Under the constraint of the contrastive loss, the positive
pair is pulled to make it close and the negative pair is pushed
apart to make it far away. The key is how to augment the data
and construct positive and negative pairs.

Many methods based on contrast learning have been proposed
and have achieved significant improvements for the sequen-
tial recommendation. Existing techniques enhance sequences
based on perturbations of random items. Xie et al. [7] propose
three data augmentation methods (crop/mask/reorder) to build
different views of user interaction sequences to construct self-
supervision signals. This contrastive learning-based sequential
recommendation method can extract more meaningful user pat-
terns and further encode the user representation effectively. Liu
et al. [36] think these methods tend to destroy the original item
relationships in the sequence. They proposed two informative
augmentation methods, i.e. substitute and insert, which lever-
age item correlations to generate robust augmented sequences.
Qiu et al. [16] find that the distribution of item embeddings
generated by recent sequential deep learning models, such as
Transformer and BERT, tends to degenerate into an anisotropic

shape, which may result in high semantic similarities among em-
beddings. DuoRec is proposed to improve the item embeddings
distribution in two ways in the contrastive learning framework. A
contrastive regularization is designed for DuoRec to reshape the
distribution of sequence representations and a model-level aug-
mentation is proposed based on Dropout to enable better seman-
tic preserving. Besides, a memory augmented multi-instance
contrastive learning method (MMInfoRec) [43] and Intentional
Contrastive Learning (ICLRec) [17] which combines contrastive
learning and user intent are proposed recently.

Different data augmentations and more ways to construct pos-
itive and negative samples are the mainstream research direc-
tions for sequential recommendation under the same contrastive
learning framework at present. So the contrastive learning-based
approaches are similar. We believe that the key to contrastive
learning is the contrastive loss function. It utilizes more and
better comparisons, which in turn improves the quality of the
representation. Therefore, the contrastive loss function-based
method is a valuable approach as some related contrastive loss
functions [19], [21] have already achieved significant improve-
ments in the top-k recommendation task.

III. METHODOLOGY

The sequential recommendation uses historical interactions
to infer user’s preference and recommend the next item. There
is an item set V containing all items and |V | is the number of
items. The historical interactions of a user are constructed as an
ordered list Su = {v1, v2, . . ., vt}, where vi ∈ V, 0 ≤ i ≤ t,
and t indicates the current time step as well as the length of
s. The recommendation task is to predict the next item vt+1 at
time step t+ 1 for the user. We propose a loss function PCL,
which needs to be combined with a specific method to be applied.
We first introduce the baseline model and then present our loss
function. As a whole, the method proposed in this article is
named PCL4SRec. The method PCL4SRec and PCL are shown
in Fig. 2.

A. Baseline Model

Recently, the Transformer encoder is widely adopted for se-
quential recommendations, and SASRec is widely used as the
baseline method as one of the typical models. It uses a self-
attention mechanism to automatically learn the user’s feature
representation at different times from the input user interaction
sequences. Generally, there is no embedding of the user in this
case, and the user’s representation at different time are obtained
by feature aggregation of items’ embeddings. Here, SASRec or
Transformer encoder is used as the baseline model. There are
three main layers: Embedding Layer, Transformer encoder, and
Prediction Layer.

1) Embedding Layer: Generally, only the embedding of
items is available in recently sequential recommendation meth-
ods, and the representation of users at different times are ob-
tained from the item embeddings through the model.The input
representations of items in the user sequence by adding the item
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Fig. 2. Proposed method PCL4SRec and PCL. PCL makes the original CL more reasonable distribution of items by BCE/CE loss and Uniformity regularization
and thus facilitating the representation of individual characteristics of items.

embedding and position embedding together as:

h0
i = vi + pt (1)

2) Transformer Encoder: The self-attention mechanism is
used to dynamically capture users’ interests at different times,
making it an effective way for sequential recommendations. The
Transformer encoder adopts a multi-headed self-attention mech-
anism and position-wise Feed-Forward Network to form the ba-
sic block. By stacking these blocks, the Transformer encoder
gains powerful feature extraction and transformation capabili-
ties and is widely used. Assuming H0 = {h0

1, h
0
2. . ., h

0
t} is

the initial representation of the sequence, after theL-layer Trans-
former encoder, a new representation is obtained as:

HL = Trm(H0) (2)

whereTrm denotes the Transformer encoder [16], [44]. And the
representation of the last layer HL is used as the final features
of the user, and hL

t is the user representation at timestamp t.
3) Prediction Layer: In the prediction phase, the predicted

value is the inner product of the representation of the user at a
time and the embedding of the item vi,

ŷ = hL
t vi (3)

SASRec optimizes the model using BCE loss, which takes into
account the predictions at each time and conducts a negative
sampling for each positive item.

B. Personalized Contrastive Loss (PCL)

In this section, we specifically analyze the shortcomings of
the CL function and propose improvements to form the new
function PCL.

1) Cl: The CL function is widely used, especially in recent
contrastive learning where it has played a key role. It can be

derived from different perspectives, but all have similar or iden-
tical forms [21], [38], [45], [46], [47]. Specifically, CL is defined
as [45], [46], [47]:

f(u, v) = h�
uv/(‖hu‖ ‖v‖) (4)

LCL =

− 1

N

∑
log

exp(f(u, v+)/τ)

exp(f(u, v+)/τ) +
∑

v∈V − exp(f(u, v−)/τ)
(5)

where u, v represents users and items, hu, v
+, v− represent

the representations of the user, positive item, and negative item,
respectively. And V − is the set of negative samples; N denotes
the batch size. f(u, v) is the cosine similarity of the (u, v) pair.
The idea of contrastive loss is to pull the user closer to the pos-
itive samples and pull the user further away from the negative
samples. Generally, non-positive samples within the same batch
are used as negative samples, as shown in the top left corner of
Fig. 2, and thus can use a large number of negative samples to
get excellent results.

CL has two drawbacks which make the embeddings too com-
pact for sequential recommendations. First, it is a relative con-
straint with no explicit distance. The other problem is that it
only widens the space between positive and negative samples.
The distribution of ideal embeddings should be uniform that CL
has not done yet. PCL’s improvements to these two points are
shown in Fig. 2.

2) Analysis of Relative and Absolute Constraints: For the
first drawback of CL, we analyze it from the perspective of gra-
dient optimization. And we combine it with absolute constraints
to bridge this gap.

Relative Constraints of the CL: There are two ways to illus-
trate this problem.
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1. Analysis on the loss function: (5) can be rewritten as fol-
lows:

LCL =
1

N

∑
log

(
1 +

∑
v∈V −

exp((f(u, v+)− f(u, v−))/τ)

)

(6)
In the optimization process, the smaller LCL is the better, i.e.,
the larger (f(u, v+)− f(u, v−) is, the better. LCL constrains
the distance between (f(u, v+) and (f(u, v−) to be as large as
possible. So the CL function is a relative constraint because it
does not have an explicit distance constraint, value constraint,
or decision boundary.

2. Gradient-based approach: Following the previous
works [21], [39], we obtain the gradient formulas as follows:

∂L(u, v)

∂hu
=

1

τ ‖hu‖

{
c(v+) +

∑
v−∈V −

c(v−)

}
(7)

where

c(v+) =
(
sv+ − (sTu sv+

)
su
)T

(Puv+ − 1) ,

c(v−) =
(
sv− − (sTu sv−

)
su
)T

Puv− ,

Puv =
exp

(
sTu sv/τ

)∑
v∈V exp (sTu sv/τ)

(8)

where su, sv are the normalized representations, i.e., su =
hu/‖hu‖, sv = v/‖v‖.

Equation (7) consists of two components, c(v+), c(v−).
Equation 8 shows that the gradient of positive items, c(v+),
is related to the distance between Puv− and 1, and the gradient
of negative items, c(v−), is related to the distance between Puv−

and 0. However, the key factor Puv is a ratio, which is indeed
a relative value gained by the softmax function. In conclusion,
the results of the gradient formulas clearly show that the CL is
influenced by the factor Puv in the optimization process. It is a
relative comparison process.

Absolute Constraints of BCE and CE: This shortcoming of
the CL can be compensated by the traditional BCE or CE loss
functions. They are widely adopted loss functions, especially
in the field of classification. BCE and CE are also the mostly
used loss functions in the field of sequential recommendation to
recent articles. They are constrained by explicit one-hot vectors,
0 or 1, to form different classification boundaries. Their formulas
are as follows,

LBCE = − [yi log (σ (ŷi)) + (1− yi) log (1− σ (ŷi))] (9)

LCE = −
N∑
i=1

yi log (σ (ŷi)) (10)

where ŷi is the predicted value and yi is the true value of one-hot
data. σ is the activation function, sigmoid is used in BCE, and
softmax is used in CE. Their derivatives are as follows,

dLBCE

dŷi
= σ (ŷi)− yi (11)

dLCE

dŷi
= yi (σ (ŷi)− 1) (12)

It can be seen that BCE constrains both positive and negative
items close to 1 or 0. CE is used for multi-classification tasks
and makes the probability of class i close to 1, i.e., close to its
corresponding decision surface when yi = 1. Thus, both BCE
and CE are absolute constraints and have explicit classification
boundaries.

3) Making Embeddings Distribution More Uniform: All the
embeddings should be uniformly distributed but CL just makes
the positive and negative items far away from each other. We
add uniformity regularization for this.

Uniformity of the CL: Recently, Wang et al. [23] argue that
uniformity prefers a feature distribution that preserves maxi-
mal information, i.e., the uniform distribution on the unit hyper-
sphere. Contrastive learning normalizes their features on the unit
hypersphere, and the unit hypersphere is indeed a nice feature
space. It is crucial that uniformity of feature distributions on the
output unit hypersphere. They also prove that the CL optimizes
this property asymptotically. The uniformity is defined as:

Luniform = log E
x,y∼pdata

[
e−2‖f(x)−f(y)‖22

]
(13)

where pdata is the distribution of the independent samples, x, y
are two samples in the data, f(x), f(y) are the representations
of them. Minimizing Luniform is equivalent to encouraging the
uniform distribution of the representations of all the data samples
from the distribution pdata.

Adding more Uniformity Regularization: The uniformity con-
straint of the CL function is insufficient for it just pushes
those negative items and makes them uniformly distributed. A
good embedding representation requires all items uniformly dis-
tributed, not just between positive and negative samples. There-
fore, we add uniformity among positive items, and among nega-
tive items as a regularization constraint on the data distribution.
Therefore, the following equation is used in this article,

Luniform = log E
v1,v2∼V −

[
e−2‖f(v1)−f(v2)‖22

]

+ log E
v3,v4∼V +

[
e−2‖f(v3)−f(v4)‖22

]
(14)

where v1, v2, v3, v4 are items, V −, V + are negative and positive
item sets, respectively.

Existing sequential recommendations tend to model local
relationships. For example, the relationship between items or
the relationship between users and items. Even if relationships
within the whole sequence are considered, this is a localized re-
lationship within a user unit, although it is a larger scope than
the former. Here the users or items are required to be evenly dis-
tributed overall, which is a global constraint that compensates
for the shortcomings of the previous local modeling.

4) Combining Absolute and Uniformity Constraints as PCL:
Based on the above detailed analysis, we use BCE or CE to
add absolute constraints to CL to make positive and negative
samples closer to the decision boundary of the classification.
This is also multi-task learning in different constraint spaces,
which helps to learn better feature representations. We enhance
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TABLE I
STATISTICS OF THE DATASETS

the regularization constraint on the uniform distribution of items
in the feature space to make their distribution more reasonable.

LPCL = α ∗ LCL + (1− α) ∗ LBCE + λ ∗ Luniform (15)

or

LPCL = α ∗ LCL + (1− α) ∗ LCE + λ ∗ Luniform (16)

where α is the weight of the CL and α ∈ [0, 1], which makes the
two losses work in a collaborative and balanced way; λ is the
regularization parameter. LBCE is used for SASRec and it can
be replaced by LCE as needed in other models.
LBCE / LCE and Luniform widen the nodes distance from

different perspectives. They solve the problem of smoothing and
insufficient personalization due to feature approximation and
distribution concentration. This allows for better feature repre-
sentation, especially for enhanced personalized features.

IV. EXPERIMENTS

Experiments are conducted to verify the effectiveness of the
PCL4SRec and the PCL function. The experimental setup, re-
sults, ablation study, and discussion of hyperparameters are pre-
sented in detail in this section. We also show the adaptabil-
ity of PCL and give visual and quantitative analyses related to
personalization.

A. Experimental Setup

1) Datasets: We conduct experiments on 5 commonly used
datasets collected from real-world platforms in different do-
mains and sparsity levels. We use three subcategories: “Beauty”,
“Sports and Outdoors”, and “Toys and Games” from the Amazon
reviews dataset, and they are abbreviated as “Beauty”, “Sports,
and “Toys”, respectively [48]. The ML-1 M (MovieLens 1 M)
dataset is used for it is one of the most classic datasets [49].
We group the interaction records by the user and sort them in
ascending order by interaction timestamp. And the statistics of
these datasets are summarized in Table I.

2) Evaluation Metrics: To avoid the biased discoveries prob-
lems associated with the sampled evaluation approach [50],
we use all the items for evaluation without negative sam-
pling [7], [15], [16], [36]. For overall evaluation, top-K
Hit Ratio (HR@K) and Normalized Discounted Cumulative
Gain(NDCG@ K) are applied with K = 5, 10. HR focuses on
the presence of positive terms, while NDCG further considers
the quality of the ranking.

3) Baseline Methods: The most traditional method POP
is used, which is also a non-sequential recommendation

method. Deep learning based methods, such as GRU4Rec [27],
NARM [51], SASRec [5], CoSeRec [36], LightSANs [15],
DuoRec [16] and SP-PLR [52], are used for comparison. They
employ advanced techniques such as RNN, attention mecha-
nism, Transformer, contrastive learning, and so on. The latter
three are competitive methods that have been proposed recently.

4) Implementation Details: We adopt the leave-one-out
strategy to evaluate the performance of each method, which is
widely employed in many related works [5], [16], [48]. For each
user, we use the last two interactions as validation data and test
data, respectively, and the other items before them are used for
training. For a fair comparison, as a regular setting following
previous works [7], [16], [36], the embedding dimension size
is 64, the batch size is set to 256, and the maximum sequence
length is set to 50. For the baseline model of SASRec, we stack
2 self-attention blocks together and set the head number as 2 for
each block. We use Adam optimizer to optimize the parameters.
We train the model with early stopping techniques according to
the performance on the validation set.

B. Performance Comparison

Table II shows the experimental results where the best re-
sults are bolded and the underlined ones are the second-best re-
sults. The differences under random seeds are statistically small,
for example, the standard deviations of NDCG@10 on the four
datasets are±0.0006,±0.0004,±0.0003,±0.001, respectively.
The proposed PCL4SRec achieves the best results on all datasets
and metrics.

POP recommends directly according to the most popular
items without considering the characteristics of any users and
items. The results are the worst among these methods. GRU4Rec
takes advantage of the RNN to model the historical sequences
and performs better than POP. NARM models the user’s purpose
using the attention mechanism based on GRU and outperforms
GRU4Rec overall which shows the effectiveness of modeling the
user’s purpose. SASRec is a self-attention-based method that
can mine the sequence and its dependencies to automatically
calculate the weights of each item. A significant and consistent
improvement over previous methods is obtained. This shows the
advantage of the self-attention mechanism for sequential recom-
mendations. And the methods based on the self-attentive mech-
anism, Transformer, have become the baseline for many subse-
quent methods. CoSeRec is a recommendation method based on
contrastive learning, with significant performance improvement
on Beauty and Sports datasets. Contrastive learning methods
made better use of data structures through data augmentation
and learn by multi-tasking. But CoSeRec introduces more pa-
rameters, while the parameter tuning of our method is simple.

LightSANs, DuoRec and SR-PLR [52] are the state-of-the-art
(SOTA) methods proposed recently. DuoRec is also in a con-
trastive learning framework, and PCL4SRec directly constrains
the feature distribution of the items and gains better results.
SR-PLR is the the latest method which combins deep learning
and symbolic learning in a dual feature-logic network, and mod-
eling users’dynamic preferences with a probabilistic method.
Table II shows that our method is superior to SR-PLR, mainly
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TABLE II
PERFORMANCE COMPARISON

TABLE III
ABLATION STUDY

because we introduce and improve the contrastive loss in se-
quential recommendation, which addresses the personalization
problem from two specific aspects. Our approach is more adapt-
able to sequential recommendation scenarios and more effec-
tive. What more, experiments show that this latest method has
worse performance than the first two methods, LightSANs and
DuoRec. These two approaches both perform well overall but
differ on different datasets. As shown in the last two columns
of the table, the improvements of PCL4SRec relative to the
baseline method SASRec are very significant, with the low-
est being over 20% and the highest being nearly 96%. Rela-
tive to the second-best results, our method boosts mostly above
ten percent, with a maximum boost of nearly 27%. Impor-
tantly, the improvement obtained from the loss function is inter-
pretable and it is also model-independent, which can be verified
subsequently.

C. Ablation Study

The results of the ablation analysis are in Table III. The first
row is the BCE-based methods, which are the worst among all
methods. The second row is the CL-based methods, which are
better than BPR methods and show the advantage of the CL
function. The combination of the two in the third row yields
better results than one of them, showing the effectiveness of

combining BCE and CL. The fourth row is CL with Uniform
loss, and the fifth row is BCE with Uniform loss. As can be seen
in the above table, after adding Uniform loss, the performances
of both BCE and CL are improved, but not as good as that of
PCL. And CL with Uniform loss is much better than BCE with
Uniform loss. The best result is our PCL in the sixth row. All
these comparisons demonstrate the effectiveness of the method
proposed in this article.

The improvements of PCL relative to BCE and CL are listed
at the bottom of the table. The results show that PCL has a
significant improvement relative to BCE, and also has a con-
sistent improvement relative to CL, but is smaller than BCE
because CL itself outperforms BCE. Overall, the last two rows
of the table show improved performance with the addition of the
new factors, and the PCL is optimal. Also, we observe that in
both NDCG boosts are higher than HR, which is consistent with
previous studies that CL is more helpful in boosting ranking
metrics. [19], [21].

D. Adaptability of PCL

To verify the adaptability and effectiveness of PCL, we chose
three datasets Beauty, Toys and ML-1 M and five methods,
NPE [53], NARM [51], GRU4Rec [27], LightSANs [15], and
FMLP-Rec [54] for experiments. Last two are strong baselines
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TABLE IV
ADAPTABILITY AND EFFECTIVENESS OF PCL

Fig. 3. Impact of the weight of CL α.

proposed recently. The baseline of this article, SASRec, is placed
at the end for the sake of comparison. Results are shown in
Table IV.

Compared with CL-based methods, PCL-based methods
show better performances in different models, and most of the
comparisons show a substantial improvement with respect to
CL. The performance on the new methods, LightSANs and
FMLP-Rec, are better than the other methods. Overall, FMLP-
Rec achieves the best performance. However, it is worth noting
that FMLP-Rec has a similar performance overall compared to
SASRec which shows that SASRec is still a strong baseline as is
widely used by many other works. Overall, PCL-based methods
perform consistently better than CL-based methods on different
datasets and different methods, which illustrates that PCL has
good adaptability and effectiveness.

E. Hyperparametric Discussion

1) Impact of the Weight of CL α: α is the weight of CL,
which makes the balance between CL and BCE. Fig. 3 shows
that generally the performance improves as the weight of CL
increases, and decreases after reaching the peak. In general,
CL requires a larger α, such as 0.9, 0.95, etc, which indicates
that CL can play an important role compared to BCE. PCL be-
comes BCE or CL loss when α = 0 or α = 1. PCL obtains the
maximum value when α ∈ (0, 1), which is consistent with the
ablation analysis.

2) Impact of the Weight of Uniformity λ: Fig. 4 shows the
HR@10 and NDCG@10 on different λ. Different datasets have
different performances but share similar trends. Both values in

Fig. 4. Impact of the weight of Uniformity λ.

Fig. 5. Visualization Analysis. Colors indicate the frequency of items. PCL
owns the largest feature spaces which facilitate the representation of individual
characteristics.

Fig. 4 rise and then fall both on Beauty and ML-1 M, while
the latter declines more rapidly. λ = 0 on the left are the cases
without this constraint and their performances are generally the
worst. This also demonstrates the effectiveness of uniformity
regularization.
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TABLE V
PCL COMPARED WITH MANY OTHER LOSS FUNCTIONS IN DIFFERENT NEGATIVE SAMPLES

Fig. 6. Variance of all items of Beauty and ML-1 M datasets with different
training epochs. PCL has a significantly large variance and measures the degree
of individualization overall.

F. Personalization Analysis

Personalization is studied using different loss functions under
the same baseline SASRec.

1) Visualization Analysis: Fig. 5 shows the spatial distribu-
tion of latent vectors for Beauty and ML-1 M under four con-
straints, respectively. Following DuoRec [16], the item embed-
ding matrix of the dataset is projected into 2D by SVD with
colors indicating the frequency of items in the dataset.

Results show that CL is the most compact and BCE is a little
larger relative to CL. The feature space of BCE+CL is larger
than CL. That of PCL is the largest, and the distribution of PCL
is the most uniform among the four. There is a significant spa-
tial expansion of PCL relative to BCE+CL which indicates the
effectiveness of uniform regularization. It can be noticed that
some outliers on the right side of BCE+CL and PCL can be
seen in these figures as a small region. When considering this,
they have a larger feature space. The formation of these small
regions may be because CL and BCE are different kinds and
spaces of constraints, and different dominant factors form these
two regions.

2) Quantitative Analysis: The variance represents the degree
of dispersion of the overall distribution and provides an overall
measure of the personalization of all items [22]. Fig. 6 shows
the changes in variance during the overall training for the four
different loss functions. The horizontal axis is the number of
training epochs.

Results show that CL generally converges the fastest but has
the smallest variance. The variance of BCE is larger than that

of CL, and the variance of BCE+CL is in the middle of the two.
These are consistent with the above visualization analysis. How-
ever, this figure clearly shows that the variance of BCE+CL is
between CL and BCE, where BCE converges slower than CL.
The variance of PCL is the largest at the last of the training. A
slow increase in the variance of PCL at the beginning of the train-
ing is observed in the figure, followed by a steep increase.These
results show the difference in the role of the three losses at dif-
ferent stages. Expanding the feature space and increasing per-
sonalization in the middle and late stages of training become the
main goals of PCL training. The good performance of PCL in
enhancing personalized representation is shown quantitatively
by Fig. 6.

G. PCL and Other Loss Functions

To compare the differences between PCL and other loss func-
tions we choose two of the datasets and three methods, NARM,
GRU4Rec and LightSANs, to study the performance of PCL.
NARM constrains the uniform distribution of item and user fea-
tures, while the proposed PCL4SRec and GRU4Rec with PCL
constrain only item features. In addition, we consider the CE
loss, which uses all items and maximizes the probability of pos-
itive samples. Thus, we divide into two modes depending on
the number of negative samples used, such as “one” and “all”
in Table V, and the corresponding CL uses the same number of
negative samples. When sampling one negative sample, we use
BPR, BCE, CL and PCL, and when using all items we use CE,
CL, and PCL. A comprehensive consideration of various loss
functions is given here, and the results are in Table V. There are
three following observations:

1. In four group comparisons of the two datasets, PCL was
the best in each group. BPR and BCE perform differ-
ently in different datasets. Generally, CL loss is better than
CE/BCE. In addition, the last three lines of each group of
CE or BCE, CL, and PCL can confirm the effectiveness of
our PCL.
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2. The comparison of sampling methods, i.e., the compari-
son between the two groups of “one” and “all”. CE on all
samples is significantly better than BCE based on a single
negative sample. CL and PCL on all samples generally tend
to achieve better results as well. Overall, all sample-based
losses outperform the one sample-based losses, but there
are differences across datasets.

3. Overall, the seven results on the two datasets show that the
general PCL achieves optimal or suboptimal results, and
the PCL based on all samples performs better, except for
the performance of LightSANs with CE loss in “all” mode.
Our proposed PCL is better than all other loss functions.
For the recent model LightSANs, PCL also achieves better
results than BCE/CE and CL overall, but the relative im-
provement is smaller than the first two models. Because
the improvement is more difficult for the better model.
Therefore, the effectiveness of our proposed PCL can also
be illustrated on the advanced baseline model.

In conclusion, PCL is optimal among various loss functions
and for different numbers of samples. All samples based loss
function tends to achieve better results.

V. CONCLUSION

We find the problem that CL makes the feature space too
compact in sequential recommendations, so CL function is un-
friendly for the personalized sequential recommendation be-
cause it is a relative constraint and has insufficient uniformity
constraints on users and items. The proposed PCL reasonably
expands the feature space and makes its distribution more uni-
form with an absolute constraint and more uniform regulariza-
tion. This facilitates the representation of personalized features,
which in turn significantly improves the recommendation perfor-
mance. The personalized features are measured qualitatively and
quantitatively by two methods. Experiments and analyses ver-
ified the state-of-the-art performance and adaptability of PCL,
despite its simplicity.

This article shows the importance of the loss function for rec-
ommendation systems. Unlike recommendation methods based
on contrastive learning frameworks, the method in this article
extends the application of contrastive learning and CL function.
The spatial distribution of features and the quality of embed-
dings are also noteworthy research directions for sequential rec-
ommendations, and for other tasks of recommendation systems.
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